

Impact of Sex and Strain on the Performance of Genomic Signatures of Hepatocarcinogenesis

Scott S. Auerbach, PhD, DABT

National Institute of Environmental Health Sciences

NTP Board of Scientific Counselors December 9-10, 2009

Background

- Functional genomic signatures (mRNA) can distinguish between hepatocarcinogens and non-hepatocarcinogens
- NTP* and others have developed these signatures
- Most signatures have been derived from and tested on gene expression from one strain of male rats or mice
- Critical question: Do the signatures predict carcinogenic outcomes in other strains/sexes?
 - Will be essential to answer before signatures can be confidently applied for hazard characterization

^{*} Auerbach, S et al., 2009.Predicting the Hepatocarcinogenic Potential of Alkenylbenzene Flavoring Agents Using Toxicogenomics and Machine Learning. Accepted by Toxicology and Applied Pharmacology

Proposed Approach

Model training data

- Male F344 rats
- 90 day studies
- Single dose level
- 30 Chemicals
 - Genotoxic hepatocarcinogens
 - Non-genotoxic hepatocarcingens
 - Hepatotoxic non-hepatocarcinogens
 - Non-hepatotoxic non-

hepatocarcinogens

Create and validate gene-expression based pattern recognition models

Model test data

- -Female F344 rats
- -Male and female Sprague Dawley rats
- -Male and female Wistar Han rats
- 90 day studies
- Single dose level
- 15 Chemicals
 - Genotoxic hepatocarcinogens
 - Non-genotoxic hepatocarcingens
 - Hepatotoxic non-hepatocarcinogens
 - Non-hepatotoxic non-

hepatocarcinogens

Key Issues

- · Genetic diversity
 - Up to 50% of genetic loci (microsatellites) in F344, Sprague Dawley and Wistar Han rats are divergent
- · Chemical selection
 - · Broad mechanism of carcinogenic action
 - Particularly important for on-genotoxic hepatocarcinogens
 - · Selection preference:
 - · Chemicals studied in more than one strain of rat
 - · Concordant carcinogenic response across species
- Dose selection
 - · Approximate a high dose level from a 2-year study
 - Hepatocarcinogens: must produce at least 40% tumors by 2 years
 - Non-hepatocarcinogens: Concordance across strains / species
- Exposure duration (90 days)
 - Allows time to elicit robust genomic response at dose levels that would be selected for a 2-year study

Expected Outcomes

- Determine the degree to which genomic-based predictive models can be applied across strains/sexes
- Add to the growing database of genomic data that can be used for predictive modeling and cross-species extrapolation

Current Activities

• Chemical and dose selection